Navigation Toolbox[™] Release Notes

MATLAB&SIMULINK®

How to Contact MathWorks

10

Latest news: www.mathworks.com Sales and services: www.mathworks.com/sales_and_services User community: www.mathworks.com/matlabcentral Technical support: www.mathworks.com/support/contact_us Phone: 508-647-7000

The MathWorks, Inc. 1 Apple Hill Drive Natick. MA 01760-2098

Navigation Toolbox[™] Release Notes

© COPYRIGHT 2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Contents

R2019b

Simultaneous Localization and Mapping (SLAM): Create 2-D and 3-D occupancy maps using SLAM algorithm and lidar scan data	1-2
SLAM Map Builder App: Interactively modify loop closures and adjust overall map using SLAM algorithm	1-2
Pose Estimation: Accurately estimate vehicle poses using IMU and GPS sensors and Monte Carlo Localization	1-2
Customizable Sampling-Based Path Planners: Plan a path from start to goal locations using RRT and RRT* algorithms	1-3
Path-Planning Metrics: Use metrics to check and compare the output of path planners	1-3
Sensor Models: Use simulated models for IMU, GPS, and range sensors	1-3
Trajectory and Waypoint Following Algorithms: Use built-in algorithms to generate trajectories and control commands for robots	1-4

R2019b

Version: 1.0

New Features

Simultaneous Localization and Mapping (SLAM): Create 2-D and 3-D occupancy maps using SLAM algorithm and lidar scan data

Use the SLAM algorithm to tune parameters for scan matching and loop-closure detection. The lidarSLAM object takes lidar scan data and builds a map as your vehicle moves through it. The algorithm generates a poseGraph and continuously optimizes edge-constraints based on detected loop closures. As more loop closures are detected, you can continuously build a map of your environment and adjust for odometry drift.

For an example using 2-D lidar scans, see "Implement Online Simultaneous Localization And Mapping (SLAM) with Lidar Scans".

For an example using 3-D lidar point clouds, see "Perform SLAM Using 3-D Lidar Point Clouds".

For more information, see "SLAM".

SLAM Map Builder App: Interactively modify loop closures and adjust overall map using SLAM algorithm

Use the **SLAM Map Builder** app to load and filter lidar scans and estimated poses from a log file or data in the workspace. Tune and run the SLAM algorithm to automatically build the map. Pause at any time to modify relative poses between scans. Modify or delete loop closures from the pose graph to improve the overall map. After you are done with the entire data set, output the map as an occupancy grid to use with path planning or other navigation algorithms.

Pose Estimation: Accurately estimate vehicle poses using IMU and GPS sensors and Monte Carlo Localization

Use localization and pose estimation algorithms to orient your vehicle in your environment. Sensor pose estimation uses filters to improve and combine sensor readings for IMU, GPS, and other sensors. Localization algorithms, like Monte Carlo localization and scan matching, estimate your pose in a known map using range sensor or lidar readings. Pose graphs track your estimated poses and can be optimized based on edge constraints and loop closures.

For more information, see "Localization and Pose Estimation"

Customizable Sampling-Based Path Planners: Plan a path from start to goal locations using RRT and RRT* algorithms

Plan paths through a 2-D environment using provided path planning algorithms:

- plannerRRT
- plannerRRTStar
- plannerHybridAStar

Specify parameters for provided 2-D state-space representations:

- stateSpaceSE2
- stateSpaceDubins
- stateSpaceReedsShepp

Validate your planned paths using occupancy maps or vehicle cost maps:

- validatorOccupancyMap
- validatorVehicleCostmap

Write your own custom state space or state validator using class interfaces:

- nav.StateSpace
- nav.StateValidator

Path-Planning Metrics: Use metrics to check and compare the output of path planners

Calculate path metrics to evaluate planned paths using the pathmetrics object. Check the clearance and smoothness based on your path constraints.

Sensor Models: Use simulated models for IMU, GPS, and range sensors

Perform sensor modeling and simulation for accelerometers, magnetometers, gyroscopes, altimeters, GPS, IMU, and range sensors. Analyze sensor readings, sensor noise,

environmental conditions, and other configuration parameters. Generate trajectories to emulate these sensors traveling through a world, and calibrate the performance of your sensors.

Sensor models include:

- gpsSensor
- imuSensor
- rangeSensor

For other sensors and more information, see "Sensor Models".

Trajectory and Waypoint Following Algorithms: Use built-in algorithms to generate trajectories and control commands for robots

Use the waypointTrajectory and kinematicTrajectory objects to generate trajectories for sensors or vehicles and control commands to send to your vehicle